Add like
Add dislike
Add to saved papers

Mechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix.

Biomaterials 2018 January
Cell-derived matrices (CDM) are becoming an attractive alternative to conventional biological scaffolding platforms due to its unique ability to closely recapitulate a native extracellular matrix (ECM) de novo. Although cell-substrate interactions are recognized to be principal in regulating stem cell behavior, very few studies have documented the acclimation of human pluripotent stem cells (hPSCs) on pristine and altered cell-derived matrices. Here, we investigate crosslink-induced mechanotransduction of hPSCs cultivated on decellularized fibroblast-derived matrices (FDM) to explore cell adhesion, growth, migration, and pluripotency in various biological landscapes. The results showed either substrate-mediated induction or inhibition of the Epithelial-Mesenchymal-Transition (EMT) program, strongly suggesting that FDM stiffness can be a dominant factor in mediating hPSC plasticity. We further propose an optimal FDM substratum intended for long-term hPSC cultivation in a feeder-free niche-like microenvironment. This study carries significant implications for hPSC cultivation and encourages more in-depth studies towards the fundamentals of hPSC-CDM interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app