Add like
Add dislike
Add to saved papers

Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface.

Bioresource Technology 2018 Februrary
Effects of nonionic surfactants on enzymatic hydrolysis of Avicel at different agitation rates and solid loadings and the mechanism were studied. Nonionic surfactants couldn't improve the enzymatic hydrolysis efficiency at 0 and 100rpm but could enhance the enzymatic hydrolysis significantly at high agitation rate (200 and 250rpm). Cellulase was easily deactivated at high agitation rate and the addition of nonionic surfactants can protect against the shear-induced deactivation, especially when the cellulase concentration was low. When 25mg protein/L of cellulase solution was incubated at 200rpm for 72h, the enzyme activity increased from 36.0% to 89.5% by adding PEG4600. Moreover nonionic surfactants can compete with enzyme in air-liquid interface and reduce the amount of enzyme exposed in the air-liquid interface. The mechanism was proposed that nonionic surfactants could enhance the enzymatic hydrolysis of Avicel by reducing the cellulase deactivation caused by shear force and air-liquid interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app