Add like
Add dislike
Add to saved papers

Raloxifene reduces the risk of local alveolar bone destruction in a mouse model of periodontitis combined with systemic postmenopausal osteoporosis.

OBJECTIVE: Periodontitis is characterized by local inflammation leading to tooth loss and severe destruction of alveolar bone. Raloxifene is a selective estrogen receptor modulator (SERM) that halts estrogen deficiency-induced systemic bone loss in postmenopausal osteoporosis without the side effects of cancer in breast and uterus. In this study, we examined the effects of raloxifene on alveolar bone mass in a mouse model with estrogen deficiency-induced periodontitis.

METHODS: Periodontitis was induced by the injection of lipopolysaccharide (LPS) into the lower gingiva in ovariectomized (OVX) mice, and the alveolar bone and femur bone mineral density (BMD) were analyzed by dual-energy X-ray absorptiometry. To explore the direct osteoclast inhibitory effect of raloxifene, a co-culture system for osteoclast formation and organ culture of alveolar bone was established.

RESULTS: When OVX mice were treated with raloxifene, the bone loss in both alveolar bone and femur were abrogated. Interleukin 1 and/or LPS stimulated the osteoclast formation and bone-resorbing activity; however, raloxifene did not show any inhibitory effect on the osteoclast formation or function. In vivo local injection of raloxifene also did not prevent bone resorption in a mouse model of periodontitis. However, the systemic treatment of raloxifene using a mini-osmotic pump did prevent the loss of BMD of alveolar bone induced by LPS.

CONCLUSION: These results suggest that the SERM raloxifene systemically maintain alveolar bone mass in a mouse model of periodontitis with osteoporosis. Increasing the alveolar bone mass by SERMs treatment in patients with postmenopausal osteoporosis may be a useful approach to preventing the destruction of alveolar bone in late-onset periodontitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app