Add like
Add dislike
Add to saved papers

Selectivity Enhancement in Electronic Nose Based on an Optimized DQN.

Sensors 2017 October 17
In order to enhance the selectivity of metal oxide gas sensors, we use a flow modulation method to exploit transient sensor information. The method is based on modulating the flow of the carrier gas that brings the species to be measured into the sensor chamber. We present an active perception strategy by using a DQN which can optimize the flow modulation online. The advantage of DQN is not only that the classification accuracy is higher than traditional methods such as PCA, but also that it has a good adaptability under small samples and labeled data. From observed values of the sensors array and its past experiences, the DQN learns an action policy to change the flow speed dynamically that maximizes the total rewards (or minimizes the classification error). Meanwhile, a CNN is trained to predict sample class and reward according to current actions and observation of sensors. We demonstrate our proposed methods on a gases classification problem in a real time environment. The results show that the DQN learns to modulate flow to classify different gas and the correct rates of gases are: sesame oil 100%, lactic acid 80%, acetaldehyde 80%, acetic acid 80%, and ethyl acetate 100%, the average correct rate is 88%. Compared with the traditional method, the results of PCA are: sesame oil 100%, acetic acid 24%, acetaldehyde 100%, lactic acid 56%, ethyl acetate 68%, the average accuracy rate is 69.6%. DQN uses fewer steps to achieve higher recognition accuracy and improve the recognition speed, and to reduce the training and testing costs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app