Add like
Add dislike
Add to saved papers

Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha.

Pharmaceuticals 2017 October 17
Tamoxifen is the most frequently used anti-estrogen adjuvant treatment for estrogen receptor-positive breast cancer. However, it is associated with an increased risk of several serious side-effects, such as uterine cancer, stroke, and pulmonary embolism. The 2',4'-dihydroxy-6-methoxy-3,5-dimethylchalcone (ChalcEA) from plant leaves of Eugenia aquea , has been found to inhibit the proliferation of MCF-7 human breast cancer cells in a dose-dependent manner, with an IC50 of 74.5 μg/mL (250 μM). The aim of this work was to study the molecular interactions of new ChalcEA derivatives formed with the Estrogen Receptor α (ERα) using computer aided drug design approaches. Molecular docking using Autodock 4.2 was employed to explore the modes of binding of ChalcEA derivatives with ERα. The 3D structure-based pharmacophore model was derived using LigandScout 4.1 Advanced to investigate the important chemical interactions of the ERα-tamoxifen complex structure. The binding energy and the tamoxifen-pharmacophore fit score of the best ChalcEA derivative (HNS10) were -12.33 kcal/mol and 67.07 kcal/mol, respectively. The HNS10 interacted with Leu346, Thr347, Leu349, Ala350, Glu353, Leu387, Met388, Leu391, Arg394, Met421, and Leu525. These results suggest that the new ChalcEA derivatives could serve as the lead compound for potent ERα inhibitor in the fight against breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app