Add like
Add dislike
Add to saved papers

Polynomial description of inhomogeneous topological superconducting wires.

We present the universal features of the topological invariant for p-wave superconducting wires after the inclusion of spatial inhomogeneities. Three classes of distributed potentials are studied, a single-defect, a commensurate and an incommensurate model, using periodic site modulations. An analytic polynomial description is achieved by splitting the topological invariant into two parts; one part depends on the chemical potential and the other does not. For the homogeneous case, an elliptical region is found where the topological invariant oscillates. The zeros of these oscillations occur at points where the fermion parity switches for finite wires. The increase of these oscillations with the inhomogeneity strength leads to new isolated non-topological phases. We characterize these new phases according to each class of spatial distributions. Such phases could also be observed in the XY model, to which our model is dual.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app