Add like
Add dislike
Add to saved papers

Neuroadaptive Control of Strict Feedback Systems With Full-State Constraints and Unknown Actuation Characteristics: An Inexpensive Solution.

In this paper, we present a neuroadaptive control for a class of uncertain nonlinear strict-feedback systems with full-state constraints and unknown actuation characteristics where the break points of the dead-zone model are considered as time-variant. In order to deal with the modeling uncertainties and the impact of the nonsmooth actuation characteristics, neural networks are utilized at each step of the backstepping design. By using barrier Lyapunov function, together with the concept of virtual parameter, we develop a neuroadaptive control scheme ensuring tracking stability and at the same time maintaining full-state constraints. The proposed control strategy bears the structure of proportional-integral (PI) control, with the PI gains being automatically and adaptively determined, making its design less demanding and its implementation less costly. Both theoretical analysis and numerical simulation validate the benefits and the effectiveness of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app