Add like
Add dislike
Add to saved papers

Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries.

Sodium ion batteries (SIBs) have attracted increasing attentions as promising alternatives to lithium ion batteries (LIBs). Herein, we design and synthesize ultrasmall MnO nanoparticles (∼4 nm) supported on nitrogen-doped carbon nanotubes (NDCT@MnO) as promising anode materials of SIBs. It is revealed that the carbonization temperature can greatly influence the structural features and thus the Na-storage behavior of the NDCT@MnO nanocomposites. The synergetic interaction between MnO and NDCT in the NDCT@MnO nanocomposites provides high rate capability and long-term cycling life due to high surface area, electrical conductivity, enhanced diffusion rate of Na+ ions, and prevented agglomeration and high stability of MnO nanoparticles. The resulting SIBs provide a high reversible specific capacity of 709 mAh g-1 at a current density of 0.1 A g-1 and a high capacity of 536 mAh g-1 almost without loss after 250 cycles at 0.2 A g-1 . Even at a high current density of 5 A g-1 , a capacity of 273 mAh g-1 can be maintained after 3000 cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app