Add like
Add dislike
Add to saved papers

Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium-Sulfur Cells with Enhanced Cycling Stability.

The critical issues that hinder the practical applications of lithium-sulfur batteries, such as dissolution and migration of lithium polysulfides, poor electronic conductivity of sulfur and its discharge products, and low loading of sulfur, have been addressed by designing a functional separator modified using hydroxyl-functionalized carbon nanotubes (CNTOH). Density functional theory calculations and experimental results demonstrate that the hydroxyl groups in the CNTOH provoked strong interaction with lithium polysulfides and resulted in effective trapping of lithium polysulfides within the sulfur cathode side. The reduction in migration of lithium polysulfides to the lithium anode resulted in enhanced stability of the lithium electrode. The conductive nature of CNTOH also aided to efficiently reutilize the adsorbed reaction intermediates for subsequent cycling. As a result, the lithium-sulfur cell assembled with a functional separator exhibited a high initial discharge capacity of 1056 mAh g-1 (corresponding to an areal capacity of 3.2 mAh cm-2 ) with a capacity fading rate of 0.11% per cycle over 400 cycles at 0.5 C rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app