Add like
Add dislike
Add to saved papers

Immobilised Electrocatalysts: Nafion Particles Doped with Ruthenium(II) Tris(2,2'-bipyridyl).

Nafion particles doped with ruthenium(II) tris(2,2'-bipyridyl) are synthesized by using a re-precipitation method. Characterization including SEM sizing and quantification of Ru(bpy)3 2+ in the Nafion particles using UV/Vis spectroscopy was conducted. The synthesized Ru-Nafion particles were investigated electrochemically at both ensemble and single particle levels. Voltammetry of the drop-cast Ru-Nafion particles evidences the successful incorporation of Ru(bpy)3 2+ into the Nafion particle but only a small fraction of the incorporated Ru(bpy)3 2+ was detected due at least in part to the formation of the likely agglomerated and irregular "mat" associated with the dropcast technique. In contrast, nano-impact experiments provided a quantitative determination of the amount of Ru(bpy)3 2+ in single Ru-Nafion particles. Finally, oxidation of solution-phase oxalate mediated by Ru(bpy)3 2+ within individual Nafion particles was observed, showing the electrocatalytic properties of the Ru-Nafion particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app