Add like
Add dislike
Add to saved papers

Effect and mechanism of microwave-activated ultraviolet-advanced oxidation technology for adsorbent regeneration.

To decrease the secondary pollution of volatile organic compounds (VOCs) during adsorbent regeneration by microwave, electrodeless lamp was added in the microwave field to oxidize VOCs in the gas phase. Ultraviolet has a significant improvement on mineralization of VOCs generated from adsorbate during adsorbent regeneration. However, the mechanism and main influence factors on the degradation of VOCs are not clear. The effect of microwave power, regeneration time, airflow rate, and humidity content on the mineralization of adsorbed tetracycline during adsorbent regeneration was studied. Ozone concentration and ultraviolet irradiation intensity were also measured to analyze the mechanism of the microwave-ultraviolet adsorbent regeneration method. Although the electrodeless lamp adsorbed microwave and competed with the regenerated adsorbent, the mineralization percentage of tetracycline increased about 10% with the presence of electrodeless lamp at the same microwave power supply. Besides, humidity content also takes an important role on enhancing the mineralization of tetracycline. The mineralization of tetracycline in the microwave-ultraviolet field consists of three major parts: pyrolysis, ozone oxidation, and free radical oxidation. More than 50% adsorbed tetracycline can be oxidized into H2 O and CO2 during regeneration in 5 min. These results support the potential use of electrodeless lamp to treat VOCs in the gas phase to decrease the risk of secondary pollution during adsorbent regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app