Add like
Add dislike
Add to saved papers

Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing.

Biomaterials Science 2017 October 25
In the present study, a pH sensitive nanogel platform for gene delivery was developed. The cationic nanogels based on dendritic polyglycerol (dPG) and low molecular weight polyethylenimine units were able to encapsulate siRNA during the manufacturing process. The thiol-Michael nanoprecipitation method, which operates under mild conditions and did not require any catalyst or surfactant, was used to develop tailor-made nanogels in the sub-100 nm range. The incorporation of pH sensitive benzacetal-bonds inside the nanogel network enables the controlled intracellular release of the cargo. The functionality to transport therapeutic biomolecules was tested by an in vitro GFP-siRNA transfection assay. Encapsulated siRNA could silence GFP expressing HeLa cells (up to 71% silencing in GFP). Furthermore, significantly reduced toxicity of the nanogel platform compared to the non-degradable PEI was observed. These properties realize a new carrier platform in the field of gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app