Add like
Add dislike
Add to saved papers

Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO 2 fixation in microalgae.

BACKGROUND: Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO2 biomitigation applications.

RESULTS: Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris . Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris . Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (~ 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems.

CONCLUSIONS: Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO2 biomitigation uses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app