Add like
Add dislike
Add to saved papers

Primal-dual interior point QP-free algorithm for nonlinear constrained optimization.

In this paper, a class of nonlinear constrained optimization problems with both inequality and equality constraints is discussed. Based on a simple and effective penalty parameter and the idea of primal-dual interior point methods, a QP-free algorithm for solving the discussed problems is presented. At each iteration, the algorithm needs to solve two or three reduced systems of linear equations with a common coefficient matrix, where a slightly new working set technique for judging the active set is used to construct the coefficient matrix, and the positive definiteness restriction on the Lagrangian Hessian estimate is relaxed. Under reasonable conditions, the proposed algorithm is globally and superlinearly convergent. During the numerical experiments, by modifying the technique in Section 5 of (SIAM J. Optim. 14(1): 173-199, 2003), we introduce a slightly new computation measure for the Lagrangian Hessian estimate based on second order derivative information, which can satisfy the associated assumptions. Then, the proposed algorithm is tested and compared on 59 typical test problems, which shows that the proposed algorithm is promising.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app