Add like
Add dislike
Add to saved papers

New bioactive glass scaffolds with exceptional qualities for bone tissue regeneration: response of osteoblasts and osteoclasts.

Biomedical Materials 2018 January 25
Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO2 -30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app