JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation.

To elucidate the genetic epidemiology of familial amyotrophic lateral sclerosis (FALS) in the Japanese population, we conducted whole-exome sequencing analysis of 30 FALS families in whom causative mutations have not been identified in previous studies. Consequently, whole-exome sequencing analysis revealed novel mutations in HNRNPA1, TBK1, and VCP. Taken together with our previous results of mutational analyses by direct nucleotide sequencing analysis, a microarray-based resequencing method, or repeat-primed PCR analysis, causative mutations were identified in 41 of the 68 families (60.3%) with SOD1 being the most frequent cause of FALS (39.7%). Of the mutations identified in this study, a novel c.862/1018C>G (p.P288A/340A) mutation in HNRNPA1 located in the nuclear localization signal domain of hnRNPA1, enhances the recruitment of mutant hnRNPA1 into stress granules, indicating that an altered nuclear localization signal activity plays an essential role in amyotrophic lateral sclerosis pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app