Add like
Add dislike
Add to saved papers

Multifaceted Effects of Delta Opioid Receptors and DADLE in Diseases of the Nervous System.

BACKGROUND: The opioid system is considered a potential therapeutic target in a variety of neurological disorders. Delta opioid receptors (DORs) are broadly expressed in the brain, and their activation protects cells from hypoxic/ischemic insults by counteracting disruptions of ionic homeostasis and initiating neuroprotective pathways. The DOR agonist D-Ala2-D-Leu2-Enkephalin (DADLE) promotes neuronal survival, mitigates apoptotic pathways, and protects neurons and glial cells from ischemia-induced cell death, thus making DADLE a promising therapeutic option for stroke. The significant amount of research regarding DORs and DADLE in the last decades also suggests their potential in treating other neurological disorders.

METHODS: This review compiled relevant literature detailing the role of DORs and agonists in central nervous system function and neuropathologies.

RESULTS: Several studies demonstrate potential mechanisms implicating a key interaction between DORs and DADLE in conferring neuroprotective benefits. A better understanding of DOR function in disease-specific contexts is critical to transitioning DOR agonists into the clinic as a therapy for stroke and other neurological diseases.

CONCLUSION: Evidence-based studies support the potential of the delta-opioid family of receptors and its ligands in developing novel therapeutic strategies for stroke and other brain disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app