Add like
Add dislike
Add to saved papers

Electron-Proton Transfer Mechanism of Excited-State Hydrogen Transfer in Phenol-(NH 3 ) n (n=3 and 5).

Excited-state hydrogen transfer (ESHT) is responsible for various photochemical processes of aromatics, including photoprotection of nuclear basis. Its mechanism is explained by internal conversion from the aromatic ππ* to πσ* states via conical intersection. This means that the electron is transferred to a diffuse Rydberg-like σ* orbital apart from proton migration. This picture means the electron and the proton do not move together and the dynamics are different in principle. Here, we have applied picosecond time-resolved near-infrared (NIR) and infrared (IR) spectroscopy to the phenol-(NH3 )5 cluster, the benchmark system of ESHT, and monitored the electron transfer and proton motion independently. The electron transfer monitored by the NIR transition rises within 3 ps, while the overall H transfer detected by the IR absorption of NH vibration appears with a lifetime of about 20 ps. This clearly proves that the electron motion and proton migration are decoupled. Such a difference of the time-evolutions between the NIR absorption and the IR transition has not been detected in a cluster with three ammonia molecules. We will report our full observation together with theoretical calculations of the potential energy surfaces of the ππ* and πσ* states, and will discuss the ESHT mechanism and its cluster size-dependence between n=3 and 5. It is suggested that the presence and absence of a barrier in the proton transfer coordinate cause the different dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app