Add like
Add dislike
Add to saved papers

Widespread Post-transcriptional Attenuation of Genomic Copy-Number Variation in Cancer.

Cell Systems 2017 October 26
Copy-number variations (CNVs) are ubiquitous in cancer and often act as driver events, but the effects of CNVs on the proteome of tumors are poorly understood. Here, we analyze recently published genomics, transcriptomics, and proteomics datasets made available by CPTAC and TCGA consortia on 282 breast, ovarian, and colorectal tumor samples to investigate the impact of CNVs in the proteomes of these cells. We found that CNVs are buffered by post-transcriptional regulation in 23%-33% of proteins that are significantly enriched in protein complex members. Our analyses show that complex subunits are highly co-regulated, and some act as rate-limiting steps of complex assembly, as their depletion induces decreased abundance of other complex members. We identified 48 such rate-limiting interactions and experimentally confirmed our predictions on the interactions of AP3B1 with AP3M1 and GTF2E2 with GTF2E1. This study highlights the importance of post-transcriptional mechanisms in cancer that allow cells to cope with their altered genomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app