Add like
Add dislike
Add to saved papers

Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine.

The development of highly sensitive and low-cost biosensors for the detection of dopamine is of paramount importance for medical diagnostics. Herein, we report the preparation of a new peroxidase-like catalyst with a uniform heterostructure by using a technique involving electrospinning, annealing and solvothermal reaction. In this catalyst system, cobalt sulfide (CoS) nanoparticles were homogenously distributed and supported on the surface of cobalt ferrite (CoFe2 O4 ) nanotubes. The as-prepared CoFe2 O4 /CoS hybrid nanotubes showed remarkably high catalytic efficiency as peroxidase mimics toward the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2 O2 . Owing to the synergistic effect between the CoFe2 O4 and CoS component, the prepared CoFe2 O4 /CoS hybrid nanotubes exhibited enhanced peroxidase-like activity, exceeding that of either the CoS nanoparticles or CoFe2 O4 nanotubes alone. Dopamine has been widely investigated due to its unique function in the nervous system. Consequently, various approaches have been developed for the sensitive determination of dopamine. In this work, a simple and sensitive colorimetric route for the detection of dopamine was established based on the ability of dopamine to induce the reduction of oxidized TMB to TMB with consequent fading of the blue color. This method shows a wide linear range (0-50μM) and a low detection limit of 0.58μM. The unique heterostructure with spinel/sulfide interfaces represents a new concept for the construction of highly efficient and multifunctional biocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app