JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors.

OBJECTIVE: Obesity-associated WAT inflammation is characterized by the accumulation and local activation of macrophages (MΦs), and recent data from mouse studies suggest that macrophages are modifiers of adipocyte energy metabolism and mitochondrial function. As mitochondrial dysfunction has been associated with obesity and the metabolic syndrome in humans, herein we aimed to delineate how human macrophages may affect energy metabolism of white adipocytes.

METHODS: Human adipose tissue gene expression analysis for markers of macrophage activation and tissue inflammation (CD11c, CD40, CD163, CD206, CD80, MCP1, TNFα) in relationship to mitochondrial complex I (NDUFB8) and complex III (UQCRC2) was performed on subcutaneous WAT of 24 women (BMI 20-61 kg/m2 ). Guided by these results, the impact of secreted factors of LPS/IFNγ- and IL10/TGFβ-activated human macrophages (THP1, primary blood-derived) on mitochondrial function in human subcutaneous white adipocytes (SGBS, primary) was determined by extracellular flux analysis (Seahorse technology) and gene/protein expression.

RESULTS: Stepwise regression analysis of human WAT gene expression data revealed that a linear combination of CD40 and CD163 was the strongest predictor for mitochondrial complex I (NDUFB8) and complex III (UQCRC2) levels, independent of BMI. IL10/TGFβ-activated MΦs displayed high CD163 and low CD40 expression and secreted factors that decreased UQCRC2 gene/protein expression and ATP-linked respiration in human white adipocytes. In contrast, LPS/IFNγ-activated MΦs showed high CD40 and low CD163 expression and secreted factors that enhanced adipocyte mitochondrial activity resulting in a total difference of 37% in ATP-linked respiration of white adipocytes (p = 0.0024) when comparing the effect of LPS/IFNγ- vs IL10/TGFβ-activated MΦs.

CONCLUSION: Our data demonstrate that macrophages modulate human adipocyte energy metabolism via an activation-dependent paracrine mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app