Add like
Add dislike
Add to saved papers

Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: A potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma.

Analytica Chimica Acta 2017 October 24
Since p53 protein has become recognized biomarker for both diagnostic and therapeutic purposes in oncological diseases with particular relevance for bladder cancer, it is highly desirable to search for a novel sensing tool for detecting the patient's p53 level at the early stage. Here we report the first study on the development and validation of a novel disposable competitive amperometric immunosensor for determination of p53 protein at subnanomolar levels, based on p53 immobilization on gold nanoparticles/carbon nanotubes modified screen-printed carbon electrodes. The assay protocol requires the use of single anti-p53 mouse monoclonal antibody (DO-7 clone), able to recognize both wild-type and mutant p53. The developed immunosensor as well as the protocol of the electrochemical immunoassay were optimized by means of an experimental design procedure to assess the suitability of the device to be validated and applied for the determination of p53 in untreated and undiluted urine samples. It was found that the developed competitive immunodevice was able to achieve wide linear range detection of wild-type p53 from 20 pM to 10 nM with a low detection limit of 14 pM in synthetic urine samples, suggesting the sensor's capability of working in a complex sample matrix. The excellent performance results also in terms of selectivity, trueness and precision, coupled with the advantages of an easy preparation and low-cost assay in contrast to other methods which require very complex, time-consuming and costly nanostructured architectures, makes the developed competitive immunosensor an analytically robust diagnostic tool, valuable for implementation of screening and follow-up programs in patients with urologic malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app