Add like
Add dislike
Add to saved papers

Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection.

Biosensors & Bioelectronics 2018 Februrary 16
Juvenile idiopathic arthritis (JIA) is a wide group of diseases, characterized by synovial inflammation and joint tissue damage. Due to the delay in the implementation of biomarkers into clinical practice and the association with severe sequels, there is an imperative need for new JIA diagnosis strategies. Electrochemical biosensors based on screen-printed electrodes and peptides are promising alternatives for molecular diagnosis. In this work, a novel biosensor for detecting juvenile idiopathic arthritis (JIA) was developed based on the immobilization of the PRF+1 mimetic peptide, as recognition biological element, on the surface of screen-printed carbon electrode. This biosensor was able to discriminate the JIA positive and negative serum samples from different individuals using differential pulse voltammetry, presenting limits of detection and quantification in diluted samples of 1:784 (v/v) and 1:235 (v/v), respectively. Evaluation by electrochemical impedance spectroscopy showed RCT 3 times higher for JIA positive sample than for a pool of human serum samples from healthy individuals. Surface analysis of the biosensor by atomic force microscopy, after contact with JIA positive serum, presented great globular clusters irregularly distributed. The long-term stability of the biosensor was evaluated, remaining functional for over 40 days of storage (after storage at 8°C). Therefore, a simple, miniaturized and selective biosensor was developed, being the first one based on mimetic peptide and screen-printed carbon electrode, aiming at the diagnosis of the juvenile idiopathic arthritis in real serum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app