JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Carbosilane metallodendrimers based on copper (II) complexes: Synthesis, EPR characterization and anticancer activity.

A series of new organometallic carbosilane dendrimers functionalized with Copper(II) complex on the surface were synthesized and characterized as potential anticancer agents. These metallodendrimers were synthesized through the reaction of dendritic ligands containing N,N- and N,O- donor atoms able to act as chelating agents with CuCl2 as metallic ion precursor. The structural characterization of these complexes was addressed through the use of different analytical and spectroscopical techniques. Particularly, an electron paramagnetic resonance study was performed to corroborate the coordination properties of these dendritic ligands. A preliminary study was carried out to establish the cytotoxicity of the new synthesized compounds in human prostate (PC3) and human cervical (HeLa) cancer cell lines in order to evaluate their potential as anticancer agents and compare their activity with other copper or analogous ruthenium metallodendrimers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app