Add like
Add dislike
Add to saved papers

A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C 60 -PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites.

In this study, a dual-type responsive electrochemical immunosensor was developed for the quantitative detection of proprotein convertase subtilisin/kexin type 9 (PCSK9), a potential biomarker of cardiovascular disease in serum. N-doped graphene nanoribbons (N-GNRs) with good conductivity were used as the sensing matrix modifying the glassy carbon electrode. Palladium platinum alloy (PdPt) nanoparticles with high catalytic performance toward the reduction of hydrogen peroxide (H2 O2 ) were reduced onto amino-functionalized fullerene (n-C60 -PdPt) and significantly amplified the electrochemical signal recorded by the amperometric i-t curve. Furthermore, staphylococcus protein A (SPA) with antibody orientation function was introduced to improve the immunoreaction efficiency. Accordingly, a label-free immunosensor was fabricated based on n-C60 -PdPt/N-GNRs for the quick detection of PCSK9. Meanwhile, to realize ultrasensitive detection of PCSK9, Pt-poly (methylene blue) (Pt-PMB) nanocomposites synthesized by a one-pot method for the first time were used as a novel signal label, which exhibited uniform morphology as well as good conductivity and produced an electrochemical signal recorded by differential pulse voltammetry (DPV). Herein, a novel sandwich-type immunosensor was designed using n-C60 -PdPt/N-GNRs as the sensing matrix and Pt-PMB as the signal label for sensitive detection of PCSK9. Under optimal conditions, the label-free immunosensor showed a linear range of 10pgmL-1 to 100ngmL -1 with a detection limit of 3.33pgmL-1 (S/N=3), and the sandwich-type immunosensor exhibited a linear range of 100 fg mL-1 to 100ngmL -1 with a detection limit of 0.033pgmL-1 (S/N=3) for PCSK9 detection, indicating its potential application in clinical bioassay analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app