Add like
Add dislike
Add to saved papers

Intragenic hypomethylation of DNMT3A in patients with myelodysplastic syndrome.

BACKGROUND: DNMT3A is a DNA methyltransferase that acts in de novo methylation. Aberrant expression of DNMT3A has been reported in several human diseases, including myelodysplastic syndrome (MDS). However, the pattern of DNMT3A methylation remains unknown in MDS.

METHODS: The present study was aimed to investigate the methylation status of DNMT3A intragenic differentially methylated region 2 (DMR2) using real-time quantitative methylation-specific PCR and analyze its clinical significance in MDS.

RESULTS: Aberrant hypomethylation of DNMT3A was found in 57% (51/90) MDS cases. There were no significant differences in age, sex, white blood cell counts, platelet counts, hemoglobin counts and World Health Organization, International Prognostic Scoring System and karyotype classifications between DNMT3A hypomethylated and DNMT3A hypermethylated groups. However, the patients with DNMT3A hypomethylation had shorter overall survival time than those without DNMT3A hypomethylation (11 months vs. 36 months, p=0.033). Multivariate analysis confirmed the independent adverse impact of DNMT3A hypomethylation in MDS.

CONCLUSIONS: Our data suggest that DNMT3A DMR2 hypomethylation may be a negative prognostic hallmark in MDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app