Add like
Add dislike
Add to saved papers

Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen.

Reduced graphene oxide (rGO) has emerged as a promising nanomaterial for reliable detection of pathogenic bacteria due to its exceptional properties such as ultrahigh electron transfer ability, large surface to volume ratio, biocompatibility, and its unique interactions with DNA bases of the aptamer. In this study, rGO-azophloxine (AP) nanocomposite aptasensor was developed for a sensitive, rapid, and robust detection of foodborne pathogens. Besides providing an excellent conductive and soluble rGO nanocomposite, the AP dye also acts as an electroactive indicator for redox reactions. The interaction of the label-free single-stranded deoxyribonucleic acid (ssDNA) aptamer with the test organism, Salmonella enterica serovar Typhimurium (S. Typhimurium), was monitored by differential pulse voltammetry analysis, and this aptasensor showed high sensitivity and selectivity for whole-cell bacteria detection. Under optimum conditions, this aptasensor exhibited a linear range of detection from 108 to 101  cfu mL-1 with good linearity (R 2  = 0.98) and a detection limit of 101  cfu mL-1 . Furthermore, the developed aptasensor was evaluated with non-Salmonella bacteria and artificially spiked chicken food sample with S. Typhimurium. The results demonstrated that the rGO-AP aptasensor possesses high potential to be adapted for the effective and rapid detection of a specific foodborne pathogen by an electrochemical approach. Graphical abstract Fabrication of graphene-based nanocomposite aptasensor for detection of foodborne pathogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app