Add like
Add dislike
Add to saved papers

Local infusion of ghrelin into the lateral amygdala blocks extinction of conditioned taste aversion in rats.

Neuroscience Letters 2018 January 2
Ghrelin is an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents. Our previous study showed that ghrelin locally infused into the lateral amygdala (LA) activates its receptor GHS-R1a and blocks acquisition of conditioned taste aversion (CTA) in rats. In this study, we further investigated the effect of ghrelin/GHS-R1a signaling on extinction of CTA. We found that local infusion of ghrelin (5μM, 0.5μl/side) into the LA not only interfered with CTA memory formation, but also the extinction of CTA memory. Pre-administration of GHS-R1a antagonist blocked ghrelin's effect on both CTA acquisition and extinction. However, pre-treatment with PI3K inhibitor only abolished the inhibitory effect of ghrelin on acquisition, but not on extinction. Altogether, our data indicated that ghrelin/GHS-R1a signaling in the LA circuit modulates both acquisition and extinction of CTA, the two forms of taste aversion processes with distinct mechanisms may also share certain molecular and circuit components in common.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app