Add like
Add dislike
Add to saved papers

A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography.

The solvation parameter model is used to prepare a system map for the retention of volatile organic compounds on the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide (SLB-IL60) by gas chromatography over the temperature range 80-280°C. Retention is governed by dispersion, dipole-type and hydrogen-bonding interactions with a different temperature dependence. The hydrogen-bond acidity of the SLB-IL60 column is unexpected since the stationary phase contains no hydrogen-bond acid groups and is not obviously connected to contributions from the deactivated column wall. The polarity number is shown to be a poor indicator of column retention properties. Principal component analysis with the system constants of the solvation parameter model as variables indicates that the properties of SLB-IL60 are not duplicated by any of the common poly(siloxane) and poly(ethylene glycol) stationary phase chemistries in common use for column preparation. The SLB-IL60 column has similar selectivity to a poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 50% cyanopropylphenyl siloxane monomer but the two columns are not selectivity equivalent. Poly(ethylene glycol) stationary phases indicated as most similar to SLB-IL60 based on their polarity numbers are shown to have quite different selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app