JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intrinsic disorder is a common structural characteristic of RxLR effectors in oomycete pathogens.

Fungal Biology 2017 November
Intrinsic disorder is common in nature and has been studied to play important biological roles in bacterial effectors. However, disorder in oomycete RxLR effectors has not been investigated previously and the roles are unknown. Our results of PONDR VL-XT disorder analysis showed that predicted oomycete RxLR effectors were significantly more disordered than other effectors and secretome. The distribution of disorder content presented preference that RxLR-dEER regions were enriched in disordered residues, suggesting potential role of disorder in effector translocation. In contrast, the disorder content was depleted in the C-terminal regions, especially for W/Y/L motifs. We also found that around 42 % of putative RxLR proteins were predicted to contain at least one α-helix-forming molecular recognition feature (α-MoRF), and most α-MoRFs were located in the C-terminal regions. Furthermore, both of the disorder mutants of PsAvh18 and PcAvh207 lost the cell death-inducing activity, indicating the potential important role of disordered structure in RxLR effector function. Overall, these results demonstrate that intrinsic disorder is a common characteristic of oomycete RxLR proteins, and we postulate that such structure feature may be important for effector translocation or function. This study extends our understanding of RxLR effectors in protein structures, and opens up new directions to explore novel mechanisms of oomycete RxLR effectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app