Add like
Add dislike
Add to saved papers

Silencing protein kinase C ζ by microRNA-25-5p activates AMPK signaling and inhibits colorectal cancer cell proliferation.

Oncotarget 2017 September 13
Developing novel strategies against human colorectal cancer (CRC) cells is needed. Activation of AMP-activated protein kinase (AMPK) could possibly inhibit CRC cells. Protein kinase C ζ (PKCζ) is an AMPK negative regulator. Here we found that PKCζ expression was significantly elevated in human colon cancer tissues and CRC cells. PKCζ upregulation was correlated with AMPK in-activation and mTOR complex 1 (mTORC1) over-activation. Reversely, PKCζ shRNA knockdown activated AMPK signaling and inhibited HT-29 cell proliferation. Significantly, downregulation of microRNA-25-5p (miR-25-5p), a PKCζ-targeting miRNA, could be the cause of PKCζ upregulation. Exogenous expression of miR-25-5p silenced PKCζ to activate AMPK signaling, which inhibited HT-29 cell proliferation. In vivo studies showed that HT-29 xenograft growth in mice was inhibited after expressing PKCζ shRNA or miR-25-5p. Collectively, PKCζ could be a novel oncogenic protein of human CRC. PKCζ silence, by targeted-shRNA or miR-25-5p expression, activates AMPK and inhibits HT-29 cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app