Add like
Add dislike
Add to saved papers

Anti-tumor activity of anthrax toxin variants that form a functional translocation pore by intermolecular complementation.

Oncotarget 2017 September 13
Anthrax lethal toxin is a typical A-B type protein toxin secreted by Bacillus anthracis . Lethal factor (LF) is the catalytic A-subunit, a metalloprotease having MEKs as targets. LF relies on the cell-binding B-subunit, protective antigen (PA), to gain entry into the cytosol of target cells. PA binds to cell surface toxin receptors and is activated by furin protease to form an LF-binding-competent oligomer-PA pre-pore, which converts to a functional protein-conductive pore in the acidic endocytic vesicles, allowing translocation of LF into the cytosol. During PA pre-pore-to-pore conversion, the intermolecular salt bridge interactions between Lys397 and Asp426 on adjacent PA protomers play a critical role in positioning neighboring luminal Phe427 residues to form the Phe-clamp, an essential element of the PA functional pore. This essential intermolecular interaction affords the opportunity to create pairs of PA variants that depend on intermolecular complementation to form a functional pore. We have previously generated PA variants with furin-cleavage site replaced by substrate sequences of tumor-associated proteases, such as urokinase or MMPs. Here we show that PA-U2-K397Q, a urokinase-activated PA variant with Lys397 residue replaced by glutamine, and PA-L1-D426K, a MMP-activated PA variant with Asp426 changed to lysine, do not form functional pores both in vitro or in vivo unless they are used together. Further, the mixture of PA-U2-K397Q and PA-L1-D426K displayed potent anti-tumor activity in the presence of LF. Thus, PA-U2-K397Q and PA-L1-D426K form a novel intermolecular complementation system with toxin activation relying on the presence of two distinct tumor-associated proteases, i.e., urokinase and MMPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app