JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

Context: Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals.

Objective: To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults.

Design: Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions.

Participants: Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects.

Intervention: Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions.

Main Outcomes: Mitochondrial respiration and ATP production.

Results: AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05).

Conclusions: Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app