Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Endometrial Polarity Paradox: Differential Regulation of Polarity Within Secretory-Phase Human Endometrium.

Endocrinology 2018 January 2
A major cause of infertility in normal and assisted reproduction cycles is failure of the endometrium to undergo appropriate changes during the secretory phase of the menstrual cycle as it acquires receptivity for an implanting blastocyst. Current dogma states that loss of epithelial polarity in the luminal epithelial cells, the point of first contact between maternal endometrium and blastocyst, may facilitate embryo implantation. Loss of polarity is likely an important change during the secretory phase to overcome mutual repulsion between otherwise polarized epithelial surfaces. Although "plasma membrane transformation" describes morphological/molecular alterations associated with loss of polarity, direct measures of polarity have not been investigated. Transepithelial resistance, a proxy measure of polarity, was downregulated in endometrial epithelial (ECC-1) cells by combined estrogen/progestin, mimicking the hormonal milieu of the secretory phase. Examination of defined polarity markers within human endometrium throughout the menstrual cycle identified downregulation of atypical protein kinase C, Stardust, Crumbs, and Scribble within the luminal-epithelial layer, with upregulation of Scribble within the stromal compartment as the menstrual cycle progressed from the estrogen-dominated proliferative to progesterone-dominated secretory phase. Epithelial (ECC-1) Scribble expression was downregulated in vitro by combined estrogen/progestin and estrogen/progestin/human chorionic gonadotropin treatment, whereas knockdown of Scribble in these cells enhanced "embryo" (trophectodermal spheroid) adhesion. In contrast, Scribble was upregulated within decidualized primary human endometrial stromal cells, with decidualization downregulated upon Scribble knockdown. These data highlight an important contribution of polarity modulation within the human endometrium, likely important for receptivity. Clinical investigations examining how polarity may be modulated in the infertile endometrium may facilitate fertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app