Add like
Add dislike
Add to saved papers

Impact of coronary lumen reconstruction on the estimation of endothelial shear stress: in vivo comparison of three-dimensional quantitative coronary angiography and three-dimensional fusion combining optical coherent tomography.

Aims: It is not clearly elucidated how the fusion technique improves the accuracy of endothelial shear stress (ESS) prediction, in comparison with that of three-dimensional (3D) quantitative coronary angiography (QCA) alone. We aimed to evaluate the difference in geometric measurements and haemodynamic estimation between 3D QCA and a 3D fusion model combining 3D QCA and optical coherence tomography (OCT).

Methods and results: Computational fluid dynamics was assessed in the coronary models of 20 patients. In the plane-per-plane comparison, the difference and agreement were assessed using a generalized linear mixed model and concordance correlation coefficient (CCC), respectively. The haemodynamic feature around minimum-lumen-diameter (MLD) was characterized using CCC values calculated for 1-mm segments. In comparison with the 3D fusion model, 3D QCA showed a shorter maximum lumen diameter (2.54 ± 0.67 mm vs. 2.78 ± 0.73 mm, P < 0.001) and smaller lumen area (4.81 ± 2.56 mm2 vs. 5.66 ± 2.97 mm2, P < 0.001), resulting in a significantly higher ESS (4.64 Pa vs. 3.78 Pa, p = 0.029). A more asymmetric lumen shape of the 3D fusion model was more likely associated with under- and over-estimation of the maximum and minimum lumen diameters in the 3D QCA model, respectively. The circumferential ESS variations, which were blunted by 3D QCA, showed the worst concordance near the MLD site (CCC = 0.370) on segment-based comparison.

Conclusion: The 3D fusion technique may be a more relevant tool for the haemodynamic simulation of coronary arteries through providing more accurate lumen characterization than 3D QCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app