Add like
Add dislike
Add to saved papers

Nasal DNA methylation differentiates corticosteroid treatment response in pediatric asthma: A pilot study.

BACKGROUND: Treatment response to systemic corticosteroid in asthmatic children is heterogeneous and may be mediated by epigenetic mechanism(s). We aim to identify DNA methylation (DNAm) changes responsive to steroid, and DNAm biomarkers that distinguish treatment response.

MATERIALS AND METHODS: We followed 33 children (ages 5-18) presenting to the Emergency Department (ED) for asthma exacerbation. Based on whether they met discharge criteria in ≤24 hours, participants were grouped into good and poor responders to steroid treatment. Nasal samples were collected upon presentation to the ED (T0) and 18-24 hours later (T1). Genome-wide DNAm was measured for both time points in 20 subjects, and compared between T0 and T1 in good and poor responders respectively. DNAm at T1 was also compared between two responder groups. DNAm of selected CpGs was verified in the complete cohort, and expression of associated genes was examined. Interactions between DNAm, common single nucleotide polymorphism (SNP) located at the CpG sites and treatment responses were assessed.

RESULTS: Three CpGs located in the OTX2 promoter showed responder-specific DNAm changes from T0 to T1, in which DNAm decreased in good but not in poor responders. Good and poor responders showed differential DNAm at T1 in 127 CpGs without and 182 CpGs with common SNP co-localization. Negative correlations between DNAm and gene expression were observed at CpGs located within the LDHC promoter, suggesting an impact of DNAm on gene regulation. Interactions between SNPs, DNAm and treatment response were detected.

CONCLUSION: Acute systemic steroid treatment modifies nasal DNAm in good responders. Nasal DNAm, dependent or independent of SNPs, can differentiate response to treatment in acute asthmatic children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app