Add like
Add dislike
Add to saved papers

Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.).

BACKGROUND: Uridine diphosphate-glucuronosyltransferases (UGTs), as multifunctional detoxification enzymes, play important roles in the biotransformation of various compounds. However, their roles in insecticide resistance are still unclear. This study presents a genome-wide identification of the UGTs in diamondback moth, Plutella xylostella (L.), a notorious insect pest of cruciferous crops worldwide. The possible roles of these UGTs in insecticide resistance were evaluated.

RESULTS: A total of 21 putative UGTs in P. xylostella were identified. Quantitative real-time polymerase chain reaction (PCR)-based analyses showed that all the UGT genes were expressed in all tested developmental stages and tissues. Bioassay results indicated that a field-collected population (BL) was resistant to 9 of 10 commonly used insecticides, and 10 of 21 UGT mRNAs were upregulated in the BL population. Exposure to the LC50 of each insecticide affected the expression of most UGT genes. Among these, the expression levels of UGT40V1, UGT45B1 and UGT33AA4 were induced by more than five insecticides, whereas indoxacarb and metaflumizone significantly repressed the expression of most UGT genes.

CONCLUSION: UGTs may play important roles in the metabolism of commonly used insecticides in P. xylostella. These findings provide valuable information for further research on the physiological and toxicological functions of specific UGT genes in P. xylostella. © 2017 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app