Add like
Add dislike
Add to saved papers

Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica).

New Phytologist 2018 January
Sugars produced by photosynthesis not only fuel plant growth and development, but may also act as signals to regulate plant growth and development. This work focuses on the role of sorbitol, a sugar alcohol, in flower development and pollen tube growth of apple (Malus domestica). Transgenic 'Greensleeves' apple trees with decreased sorbitol synthesis had abnormal stamen development, a decreased pollen germination rate and reduced pollen tube growth, which were all closely related to lower sorbitol concentrations in stamens. RNA sequencing and quantitative RT-PCR analyses identified reduced transcript levels during stamen development and pollen tube growth in the transgenic trees of a stamen-specific MYB39-like transcription factor, MdMYB39L, and of its putative target genes involved in hexose uptake, cell wall formation and microsporogenesis. Suppressing MdMYB39L expression in pollen via antisense oligonucleotide transfection significantly reduced the expression of its putative target genes and pollen tube growth. Exogenous sorbitol application during flower development partially restored MdMYB39L expression, stamen development, and pollen germination and tube growth of the transgenic trees. Addition of sorbitol to the germination medium also partially restored pollen germination and tube growth of the transgenic trees. We conclude that sorbitol plays an essential role in stamen development and pollen tube growth via MdMYB39L in apple.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app