Add like
Add dislike
Add to saved papers

[Construction and verification of NF-κB luciferase reporter gene system].

To quantify the transcriptional activity of NF-κB and to screen drugs related to the regulation of NF-κB activation, we constructed a recombinant plasmid through deleting the original CMV promoter of retrovirus vector pQCXIP and inserting the NF-κB enhancer and NanoLuc luciferase sequence into the vector. Then, using the recombinant plasmid we constructed a cell line in which the expression of NanoLuc luciferase (NLuc) was regulated by NF-κB. The inserted sequences were verified by restriction endonuclease digestion and sequencing. Tumor necrosis factor-α (TNF-α), an NF-κB activator, acted on the constructed NLuc cell line and leaded to the specific luciferase reaction. The luciferase reaction showed a fine time and dose dependence to the TNF-α stimulation, indicating the successful construction of the NF-κB regulated NLuc-expressing cell line. Besides, the NF-κB inhibitor, triptolide, reduced the expression of NLuc in a dose-dependent way. The constructed reporter system in this study could be applied in the quantification of the NF-κB transcriptional activity and in the NF-κB regulation-related drug screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app