JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Negative Regulation of TRPA1 by AMPK in Primary Sensory Neurons as a Potential Mechanism of Painful Diabetic Neuropathy.

Diabetes 2018 January
AMPK is a widely expressed intracellular energy sensor that monitors and modulates energy expenditure. Transient receptor potential ankyrin 1 (TRPA1) channel is a widely recognized chemical and thermal sensor that plays vital roles in pain transduction. In this study, we discovered a functional link between AMPK and TRPA1 in dorsal root ganglion (DRG) neurons, in which AMPK activation rapidly resulted in downregulation of membrane-associated TRPA1 and its channel activity within minutes. Treatment with two AMPK activators, metformin or AICAR, inhibited TRPA1 activity in DRG neurons by decreasing the amount of membrane-associated TRPA1. Metformin induced a dose-dependent inhibition of TRPA1-mediated calcium influx. Conversely, in diabetic db/db mice, AMPK activity was impaired in DRG neurons, and this was associated with a concomitant increase in membrane-associated TRPA1 and mechanical allodynia. Notably, these molecular and behavioral changes were normalized following treatment with AMPK activators. Moreover, high-glucose exposure decreased activated AMPK levels and increased agonist-evoked TRPA1 currents in cultured DRG neurons, and these effects were prevented by treatment with AMPK activators. Our results identify AMPK as a previously unknown regulator of TRPA1 channels. AMPK modulation of TRPA1 could thus serve as an underlying mechanism and potential therapeutic molecular target in painful diabetic neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app