JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes.

The surge in luteinizing hormone (LH) in preovulatory ovarian follicles triggers the resumption of oocyte meiosis accompanied by expansion of surrounding cumulus cells and ovulation of cumulus-oocyte complexes (COCs) into the oviduct. Over the last 15 years, substantial progress has been made in elucidating the key pathways by which the LH signal spreads within the preovulatory follicle and in identifying the molecules responsible for maintaining oocyte arrest and meiosis resumption. It is now clear that the adenylcyclase-mediated rise in intracellular cyclic adenosine monophosphate leads to activation of the epidermal growth factor receptor (EGFR) network in granulosa and cumulus cells. This signaling network can control the transcription of key genes required for cell metabolism, cumulus expansion, and oocyte meiosis resumption. In addition, EGFR signaling is involved in the regulation of gap junctional communication within follicular somatic cells, and in this way it can control the diffusion of meiosis-arresting molecules as well as energy substrates into the oocyte. Thus, the proper functioning of the follicular EGFR network is a vital precondition for the production of matured and developmentally competent oocytes. However, most current in vitro maturation systems are based on a culture of COCs isolated from growing follicles, in which function of the EGFR network may be insufficient for promoting oocyte meiotic and developmental competence. This review focuses on research identifying the importance of the EGFR signaling in somatic follicular cells for oocyte meiotic and developmental competence, and on special approaches to the culture of COCs isolated from growing follicles to promote oocyte quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app