Add like
Add dislike
Add to saved papers

Graphene oxide@gold nanorods for chemo-photothermal treatment and controlled release of doxorubicin in mice Tumor.

Graphene oxide (GO) is a close derivative of graphene has unlocked many pivotal steps in drug delivery due to their inherent biocompatibility, excellent drug loading capacity, and shows antibacterial, antifungal properties etc. We used a novel plant material called Gum arabic (GA) to increase the solubility of GO as well as to chemically reduce it in the solution. GA functionalized GO (fGO) exhibited increased absorption in near infra-red region (NIR) which was exploited in photothermal therapy for cancer. In order to understand the shape and size effect of GO which may affect their rheological properties, we have conjugated them with gold nanorods (GNRs) using in situ synthesis of GO@GNRs via seed mediated method. To the above conjugate, Doxorubicin (DOX) was attached at ambient temperature (28±2°C). The release kinetics of DOX with the effect of NIR exposure was also carefully studied via in vitro photothermal killing of A549 cell lines. The enhancement in NIR induced drug release and photothermal property was observed which indicates that the fGO@GNRs-DOX method is an ideal choice for chemotherapy and photothermal therapy simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app