Add like
Add dislike
Add to saved papers

Suppression of nucleocytoplasmic p27 Kip1 export attenuates CDK4-mediated neuronal death induced by status epilepticus.

Aberrant cell cycle re-entry promotes neuronal death in various neurological diseases. Thus, cyclin-dependent kinases (CDKs) seem to be one of potential therapeutic targets to prevent neuronal loss. In the present study, we investigated the involvements of CDK4, CDK5 and p27Kip1 (an endogenous CDK inhibitor) in status epilepticus (SE)-induced neuronal death. Following SE, CDK4 expression was increased in CA1 neurons, while CDK5 was decreased. Most of TUNEL-positive neurons showed CDK4 expression, but less CDK5 expression. Flavopiridol (a CDK4 inhibitor) attenuated TUNEL signal and CDK4 expression in CA1 neurons following SE. CDK5 inhibitors did not affect these phenomena. Both flavopiridol and leptomycin B (an inhibitor of chromosome region maintenance 1) mitigated SE-induced neuronal death by inhibiting nucleocytoplasmic p27Kip1 translocation. These findings suggest that SE may lead to nucleocytoplasmic p27Kip1 export that initiates CDK4, not CDK5, induction, which an abortive and fatal cell cycle re-entry progress in CA1 neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app