Add like
Add dislike
Add to saved papers

Detecting Activated Cell Populations Using Single-Cell RNA-Seq.

Neuron 2017 October 12
Single-cell RNA sequencing offers a promising opportunity for probing cell types mediating specific behavioral functions and the underlying molecular programs. However, this has been hampered by a long-standing issue in transcriptional profiling of dissociated cells, specifically the transcriptional perturbations that are artificially induced during conventional whole-cell dissociation procedures. Here, we develop Act-seq, which minimizes artificially induced transcriptional perturbations and allows for faithful detection of both baseline transcriptional profiles and acute transcriptional changes elicited by behavior/experience-driven activity. Using Act-seq, we provide the first detailed molecular taxonomy of distinct cell types in the amygdala. We further show that Act-seq robustly detects seizure-induced acute gene expression changes in multiple cell types, revealing cell-type-specific activation profiles. Furthermore, we find that acute stress preferentially activates neuronal subpopulations that express the neuropeptide gene Cck. Act-seq opens the way for linking physiological stimuli with acute transcriptional dynamics in specific cell types in diverse complex tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app