JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway.

Diabetic cardiomyopathy (DCM) is defined as ventricular dysfunction occurring independently of a recognized cause such as hypertension or coronary artery disease. Liver X receptor α (LXRα), a subtype of ligand-activated transcription factors LXRs, has been considered as a potential pharmacological target in the pathogenesis of cardiovascular and metabolic diseases. However, the potential mechanism of how LXRα is regulated in cardiomyocytes is still unclear. This study investigated the effect of activating LXRα with GW3965 on cardiomyocyte apoptosis and its upstream regulator in glucose-induced H9C2 cells. Our data indicated that GW3965 up-regulated the expression of LXRα, inhibited cardiomyocyte apoptosis, and altered the apoptosis-related proteins in glucose-induced H9C2 cells. In addition, GW3965 restored the mitochondrial membrane potential level and decreased the ROS production induced by glucose. Moreover, LXRα was confirmed as a direct target of microRNA-1 (miR-1) that was involved in cardiomyocyte apoptosis of DCM, and overexpression of miR-1 abrogated the inhibiting effect of GW3965 on glucose-induced apoptosis in H9C2 cells. This study highlights an important role of LXRα in the development of DCM and brings new insights into the complex mechanisms involved in the pathogenesis of DCM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app