Add like
Add dislike
Add to saved papers

Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting.

Small 2017 December
The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4 Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx ) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx ) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm-2 and a low Tafel slope of 46 mV dec-1 for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm-2 . More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches ≈10 mA cm-2 at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app