JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of Human Subcutaneous Adipose Tissue MicroRNA Profile Associated with Changes in Adiposity-Related Parameters.

SCOPE: To analyze the effect of three calorie-restricted diets with different amount and quality of carbohydrates on subcutaneous adipose tissue (SAT) microRNA (miRNA) profile.

METHODS AND RESULTS: 6-month parallel, randomized trial conducted on overweight and obese subjects randomized to: 1) low glycemic index diet (LGI), 2) high glycemic index diet (HGI), and 3) low-fat (LF). The genome-wide SAT miRNA profile was assessed in eight randomly selected participants and the most relevant changing miRNAs (n = 13) were validated in 48 subjects. None of the miRNAs showed significant changes between the intervention groups. However, changes in some of them correlated with changes in biochemical and anthropometric variables. Stratifying our population according to tertiles of percentage change in body weight (BW), we observed a significant down-regulation of miR-210 in those subjects in Tertile 1 as compared to Tertile 3. When our population was stratified by tertiles of waist circumference, miR-132, miR-29a, miR-34a, and miR-378 were found to be significantly down-regulated, in T2 compared to T3. Furthermore, when stratified by tertiles of fat mass, we also observed the significant down-regulation of miR-132 in T1.

CONCLUSION: The macronutrient composition of a calorie-restricted diet does not affect the expression of the miRNAs analyzed, while changes in adiposity play a primary regulatory role.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app