Add like
Add dislike
Add to saved papers

Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets.

Determining the three dimensional arrangement of proteins in a complex is highly beneficial for uncovering mechanistic function and interpreting genetic variation in coding genes comprising protein complexes. There are several methods for determining co-complex interactions between proteins, among them co-fractionation / mass spectrometry (CF-MS), but it remains difficult to identify directly contacting subunits within a multi-protein complex. Correlation analysis of CF-MS profiles shows promise in detecting protein complexes as a whole but is limited in its ability to infer direct physical contacts among proteins in sub-complexes. To identify direct protein-protein contacts within human protein complexes we learn a sparse conditional dependency graph from approximately 3,000 CF-MS experiments on human cell lines. We show substantial performance gains in estimating direct interactions compared to correlation analysis on a benchmark of large protein complexes with solved three-dimensional structures. We demonstrate the method's value in determining the three dimensional arrangement of proteins by making predictions for complexes without known structure (the exocyst and tRNA multi-synthetase complex) and by establishing evidence for the structural position of a recently discovered component of the core human EKC/KEOPS complex, GON7/C14ORF142, providing a more complete 3D model of the complex. Direct contact prediction provides easily calculable additional structural information for large-scale protein complex mapping studies and should be broadly applicable across organisms as more CF-MS datasets become available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app