JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

miR-449a: a potential therapeutic agent for cancer.

Anti-cancer Drugs 2017 November
MicroRNAs (miRNAs) have been reported to be associated with cancer progression and carcinogenesis. They are small, highly conserved, noncoding RNA molecules consisting of 19-25 nucleotides. By binding to complementary binding sites within the 3'-untranslated region of target mRNAs, miRNAs inhibit the translation of mRNAs or promote their degradation. miRNAs play critical roles in cancer initiation and development by functioning either as oncogenes or as tumor suppressors. Similarly, several studies have shown that miRNAs are involved in regulating various biological processes, including apoptosis, proliferation, cellular differentiation, signal transduction, and carcinogenesis. Among miRNAs, one that may be of particular interest in cancer biology is miR-449a, which has been reported to inhibit tumor growth, invasion, and metastasis, and to promote apoptosis and differentiation through the transforming growth factor-β activated kinase 1, NOTCH, nuclear factor-κB/P65/vascular endothelial growth factor, retinoblastoma-E2F, mitogen-activated protein kinase signaling pathways, WNT-β-catenin signaling, tumor protein P53, and androgen receptor signaling pathways. The miR-449 cluster is located in the second intron of CDC20B on chromosome 5q11.2, a region that has been identified as a susceptibility locus in cancer, and the abnormal expression of miR-449a may be related to the occurrence and development of tumors. As one example, miR-449a has been reported to be involved in the development of carcinoma and may be a potential prognostic indicator. On the basis of the putative pathogenetic relationships between cancer and miR-449a, we consider that miR-449a has the potential to serve as a therapeutic agent for the treatment of some types of cancer. In this review, the role of miR-449a in tumorigenesis and its mechanism of action are explored. Furthermore, its potential as a therapeutic agent in cancer treatment is considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app