Add like
Add dislike
Add to saved papers

Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression.

Cell Death & Disease 2017 October 13
The downregulation of receptor tyrosine kinase EphA7 is frequent in epithelial cancers and linked to tumor progression. However, the detailed mechanism of EphA7-mediated prostate tumor progression remains elusive. To test the role of EphA7 receptor in prostate cancer (PCa) progression directly, we generated EphA7 receptor variants that were either lacking the cytoplasmic domain or carrying a point mutation that inhibits its phosphorylation by site-directed mutagenesis. Overexpression of wild-type (WT) EphA7 in PCa cells resulted in decreased tumor volume and increased tumor apoptosis in primary tumors. In addition, ectopic expression of WT EphA7 both can delay PCa cell proliferation and could inhibit PCa cell migration and invasion. This protein can also induce PCa cell apoptosis that correlated with increasing the protein expression levels of Bax, elevating the caspase-3 activities, reducing the protein expression levels of Bcl-2 and facilitating the dephosphorylation of Akt, which is further increased by the stimulation of ephrinA5-Fc. However, expression of these EphA7 mutants in PCa cells has no effect in vivo and in vitro. The expression of EphA7 and ephrinA5 was significantly decreased in PCa specimens compared with BPH tissues or paired normal tissues. Moreover, the phosphorylation of EphA7 was positively related with ephrinA5 expression in human prostate tissues. In sum, receptor phosphorylation of EphA7, at least in part, suppress PCa tumor malignancy through targeting PI3K/Akt signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app